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Abstract:       

The recent developments made in the software engineering technologies has introduced the growth 

of the data. In order to handle the explosive growth of the data, many software quality assessments 

are introduced to validate designed software. Software defects assessment is one of the finest 

qualities of software engineering models.  Software defects classification is the basis for effective 

management of software defects. This paper  presents a novel ELMA+ technique  to predict the 

classes of software defects. Here, an ensemble learning approach is taken to do the prediction 

systems. Initially, the defect data is collected from the public repository. A simpler exploratory 

data analysis is done to know the count of presence and absence of software defects. SMOTE 

technique is applied to preprocess the collected dataset. The presence of oversampling data has 

lowered the participation of minority classes during the training process. In order to leverage the 

minority classes and the presence of data ambiguity issues, the oversampling data are aligned with 

the synthetic data creation. The generated synthetic examples in alignment to the real-time data 

behave like feature space instead of data space.  The minority of each class combines with the line 

segments of the nearest data points. Once the majority and minority classes are defined properly, 

then the oversampled data are sorted out. The scaled features are then fed into the ensemble of 

classifiers, namely, k-nearest neighbors (k-NN), Adaboost and Bagging. These three classifiers 

take the feature scaled data as input to classify the defects of the softwares.  The proposed 

framework is simulated and  has shown the efficacy of the proposed ensemble classifiers in terms 

of accuracy, sensitivity, specificity and the precision. The comparative analysis done from the 

perspective of before and after SMOTE application. It is clearly understood from the achieved 
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results that the feature scaled data into the ensemble classifiers has yielded better outcomes.  

Keywords: Software engineering; Software defects; SMOTE technique; feature scaling process; 

Ensemble classifiers; Oversampling data.  

1. Introduction:        

Software Engineering (SE) is one of the eminent fields that deals with the organization of the 

developed and developing software. Quality Assurance (QA) of the software is a crucial role in 

the software development industry. QA is the kind of behavioral activity performed over the 

execution of the software projects (Wang et al,2016). Software Testing (ST) is an active research 

area that imbibes with the quality of the software products. Generally, the testing consumes a 

higher time and effort to test the test cases. There are different kinds of software testing available, 

even though the bugs (or) errors remain to be unresolved due to the lack of time and effort (Yang 

et al, 2015). Therefore, a need of improvising the software testing field that preserves the time and 

cost of the organizations. The developer (or) the tester should be proficient in analyzing and 

predicting the software bugs at an earlier phase.  Software bugs are inevitable in nature. The recent 

developments made in the software industry have been emerging with complex software 

applications. It is mandated that the developed software should be free from bugs (Huo X et al, 

2016). The errors caused by programming functions are known as software bugs. Significantly, it 

reduces the performance of the entire software applications. Each software has maintained a Bug 

Tracking System (BTS) which acquires, organizes, and monitors the bugs and its reports. With the 

BTS, the software entities like users, developers and the testers make use of it, to generate the test 

reports. Once a bug is found, it undergoes several phases to resolve it.  Analysis and Prediction of 

the bugs using ensemble classifiers is being considered widely in this research study. The design 

of predictive classifiers is possible with the detailed analysis of the causes of software bugs (CJ 

Clemente, et al, 2018). Different prediction models related to the bug indicators are developed to 

predict the count of bugs and its resolving procedures. Prediction models assist the developers to 

provide software testers and the developers. Several steps are taken to support the bug prediction 

models, so as to improve the quality of the software products. It prevents the bug severity (Li et 

al, 2017) in future bugs. Software Defect Prediction (SDP) is an important field of study that 

determines the software quality and its administration with reduced costs. The continuous failures 

of the software over time are labeled as software defects.  The software bugs are obtained from  

the software developer and stakeholders. The role of a software defect prediction system is to 

predict the defects by improving the software quality with reduced costs. Several researchers are 

working on improving the static attributes which define the software quality metrics using effective 

learning approaches. It relies on software attributes such as Line of Code (LoC) and also predicts 

the software quality systems. In the angle of software quality systems, a different version of 

prediction techniques are available for different testing and software modules environments.  

 

1.1 Contributions of the study 
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 The highlights of this paper are:  

a) The historical and synthetic data are employed to resolve the minority classes and data 

ambiguity issues.  

b) The deployment of SMOTE technique has leveraged the minority classes by creating 

synthetic data in order to find out the nearest data points.  

c) The data space is treated as feature space to handle oversampling data.  

d) Ensemble of classifiers, like K- Nearest Neighbors, Adaboost and Bagging techniques has 

improved the predictive quality by using feature scaled data.  

e) The prediction accuracy is higher than the conventional classifiers.  

  1.2 Organization of the paper 

The paper is organized as follows:  

 Section II presents the literature survey that   reviews  the existing techniques.  

 Section III presents the Proposed framework that explains the proposed phases.  

 Section IV presents the Experimental Results and Discussion which describes the achieved 

performance using the proposed techniques.  

 Section V presents the Conclusion that portrays the findings of the study.     

 

2. Related work: 

The review of  existing studies from the aspects of objectives, techniques designed, merits and the 

demerits in this field is discussed. (Rudolf Ferenc et al, 2020) explored the scope of deep learning 

in bug prediction systems. It was explored on the bugs of Java classes and obtained 55.27% F-

measure than the conventional prediction systems. The dimensions of the bugs are not considered 

for analytic purposes which brings replication issues.  (Cheng Zhou et al, 2020)  presented the 

prediction model for named entity recognition which intensively worked on the information 

extraction process. Based on the obtained fine-grained factual information, the accessibility of bug 

prediction under neural networks was improved. The concept of the conditional random fields has 

helped to resolve the prediction error 0f 91.1%. (Sushant Kumar Pandey et al, 2019) has presented 

deep features and ensemble learning techniques.  It was designed to enhance the testing efforts on 

the Promise repository NASA dataset. The bug features are deeply represented and analyzed under 

auto-encoders that enhance the performance of the bug predictions via the highest correlation 

coefficients. Bug prediction on the successive count of the software systems was explored by 

(Sushant Kumar Pandey et al, 2020). The metadata of each bug was given into the training layers 

of deep features which has avoided the overfitting and class imbalance issues. It is explored on 

seven datasets that have reduced the MSE value from 0.71 to 4.715 and MAE from 0.22 to 1.679.      
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(Yan Xiao et al, 2018) has improved the localization of the bugs using enhanced 

convolutional neural networks. Here, the frequency of the bugs are estimated and then fixed using 

word embedding models. The system has reduced the bug fixing computational time and the test 

cases generation time. The fundamental thought is to sort out the bug by developer  with reference 

to  comparative skill with the set of predefined bug classes. (Guo et al, 2020) has presented a 

Word2vec to the CNN implementation for the bug summary process. Some researchers have 

studied the components, products, priority and severity to enhance the prediction accuracy of the 

bug assignment process.  (Zhao et al, 2019) has recommended  a topic model based Latent Dirichlet 

Allocation (LDA) method to compute the similarity of bug reports. With the help of the multiple 

attribute data, some inconsistencies prevailing in bug reports are done.  The supervision of the data 

is done by LDA that derived the main subjects  (Xia et al, 2017). Regardless of it, labeling of bug 

reports with different label information can lead to the context information loss.  Due to the 

information retrieval methods, topic modeling systems take the largest data size. A semi-

supervised text categorization model (Xuan et al, 2017) was studied to accurately generate the bug 

reports data. Along with the concept of bayesian approach, the report data generation was quite 

better.  Social networking techniques (Xuan et al, 2012) has presented the bug classes by 

prioritizing the developers. Several influential factors such as characteristics of products, time 

variation and the noise tolerance have prioritized the developers.   

Approaches like tossing paths were to fix the bug reports. (Jeong et al, 2009) has presented 

the transfer graph model that classifies the bugs. It also reported the accuracy of the bug report 

assignment.  However,  it does not ensure the feasibility rate of the classified  bugs. (Sajedi 

Badashian et al, 2020) has introduced the transfer graph model with different attributes. The bug 

tossing issues in bug triaging has reported that 93% of bug reports are tossed. It has stated that the 

bugs were not properly ensured for different environments. (Shokripour et al, 2015) has yielded 

the class score for the bug parameters. With the help of fuzzy logic systems, the bug reports are 

classified into their respective classes.   (Couto et al, 2012) has described a robust model that 

portrayed the causality between software metrics and the bugs occurrence. With the help of corpus, 

the prediction of bugs were determined. However, the false positive rate of bug classification has 

increased.     

 HyGRAR, a hybrid classification model that merges the hidden layer functionalities of 

ANN with the association rule mining (Miholca et al, 2018a)  were introduced. The relationship 

between the software metrics was classified into defective and non-defective software entities. It 

was explored on the NASA PC software databases. Hidden units were highly increased that 

developed imbalance class issues. Unsupervised learning (Miholca et al, 2017) under coupling 

metrics was explored to maintain the evolution of the bugs. An object oriented system was 

introduced to quantify the coupling of application scenarios. The representation of high 

dimensional datasets has increased the textual data performance. Doc2Vec conversion has 

increased the structural class rates. The role of semantic and structural features  (Miholca et al, 

2019) under the learning process increased the contextual information rate. The files were coded 
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under Abstract Syntax Trees (AST) and converted into the token vectors. CNN classifiers was 

used to work out with the token vectors. . Based on the semantic features, the classes were done 

with 99.5% accuracy rate. In continuation with,  a hybrid algorithm was studied using association 

rules and artificial neural networks  (Miholca et al, 2018b). Here, 10 open source data was 

implemented to enhance the classifier’s efficiency, however, the heavy computational steps were 

observed.   

In (Radjenovic D. Heri, 2013), a systematic review was done on quality metrics of software 

defect prediction. The review has stated that the prediction of fault location is really helpful in 

influencing the quality metrics and thus, contextual properties explored the accessibility of 

selecting the quality metrics. An intelligent software fault prediction was studied by Deep Belief 

Networks (Wang et al, 2016). .  With the help of syntax trees, the semantic features were gathered 

and analyzed on the within-project defect prediction (WPDP) and cross-project defect prediction 

(CPDP). Both the prediction model has decreased the false positive rate by 10% than TCA+ 

algorithm. In (Jing et al, 2017), the author was specific to resolve the class imbalance problems by 

an improved Subclass Discriminant Analysis (SDA). SDA has deliberately resolved the feature 

learning modules by evenly distributing the source and target data consistently.From the 

perspective of cross-project domain, the prediction model has lowered the class separation based 

on logical constraints.  Two stage cost sensitive learning module (Liu et al, 2014) was designed to 

leverage the cost sensitivity analysis on the deep learning algorithms. In alignment to that, a cost-

sensitive approach was also designed for feature selection algorithms such as Cost-Sensitive 

Variance Score (CSVS), Cost-Sensitive Laplacian Score (CSLS), and Cost-Sensitive Constraint 

Score (CSCS). Though it decreased the computational time and also leveraged the cost metrics 

based on the software quality, the efficiency of determining contextual information was not 

studied.  Similar study was studied using  a ranking approach (Yang et al, 2015) that stated the 

efficient use of testing resources. Depending on the count of defects, the module was designed to 

cope up with the noisy data as well as the feature learning modules. The characterization of the 

relationship between the square errors exhibited in the classifier were rectified under optimization 

schemes.  

In (Czibula et al, 2014), authors have explored latent semantic indexing in the 

computational linguistics fields. The processing capabilities of the genetic ontology was studied 

latent semantic analytics. The similarity among the topics were extracted to process the 

experimental data. Some of the structured data was not extracted under heterogeneous classes. 

Relational Association Rules (RAR) (Haghighi et al,  2012) was designed to resolve the defect 

prediction under different association rules. It was explored on NASA datasets that required heavy 

time on the data cleaning process.  It was processed on different datasets, however, the role of the 

constructed class is not focussed on a semi-supervised algorithm. One of the software qualities is 

the cost reduction which was studied by data mining approach (Kirbas et al, 2017a).  Naive bayes 

classifier was employed , along with the performance of other 37 different classifiers, so as to 

detect the faults. The authors have stated that the decreased costs enhanced the classifiers' 
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performances. The system has increased the classification accuracy, yet, it is not feasible to 

determine the boundaries of classes in bagging algorithms. The software faults in industrial sectors 

(Kirbas et al, 2017b)] have distorted the relationship between the evolutionary coupling and 

defects. It experimented on the legacy financial system and a modern telecommunications system.  

Regression analysis was employed to find out the relationship between the software metrics.  The 

different effects of evolutionary coupling were employed to detect the faults based on their types, 

size and process metrics. Likewise, the infrastructure issues are not studied for different testing 

cycles. In (Cataldo et al,  2009), the author has introduced a conceptual coupling based metrics for 

software defect prediction systems. Coupling metrics is one of the software quality metrics that 

defines the performance of the prediction modules. It was established by estimating the similarities 

among the bugs. However, it can’t handle the class imbalance issues during data crowdedness. 

Similar study was extended using empirical study (Chen et al, 2013). The coupling class includes 

the structural, semantic and dynamic measures of the software systems. Here, Java classes such as 

Argo UML, J Hot Draw and jEdit were studied. The semantic coupling was studied more than 

other coupling measures. The encapsulation between the classes were revised using call methods 

(Sushan et al, 2020). The logical constraints on class call methods are not studied.   

3. Proposed Methodology:           

This section presents the working of the ELMA+ that classifies software defects by means of 

ensemble classifiers.         

3.1 Data collection & preprocessing:  

The database is collected from the public repository, named, Promise datasets.  It contains several 

classes of the software bug classes. The dataset contains many noises ie. missing  and unbounded 

data. These imbalances are rectified using random sampling techniques. This step is known as data 

preprocessing.  The collected datasets are raw  which have to be preprocessed using preprocessing 

techniques to remove the irrelevant and uncertainties from the data. Generally, sampling methods 

are employed to preprocess the data. The data sampling reduces the computational steps of the 

training data.  Here, the sampling methods are classified into two approaches, namely, under 

sampling methods and over sampling methods. In this study, automatic proper sampling methods 

are explored to reduce the computational space of irrelevant data. The larger dataset is converted 

into smaller random samples. Each sample consists of T tuples data. While drawing a sample from 

the tuples T, it is likely to be the probability of tuples under the dataset D ie. 1/T, then all tuples 

are equally sampled. Some tuples are recorded before being replaced with the other tuples. By 

doing so, all tuples are sampled under the given functions which could refine the noisy and 

redundant data.    

3.2 Feature extraction:   

 In the proposed work, a novel Synthetic Minority Over-Sampling Technique (SMOTE) technique 
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is employed for an oversampling process so as to alleviate the class imbalance problem and make 

the training dataset contain adequate samples of both majority and minority classes.  Many 

oversampling data is replaced so as to enhance the minority class recognition. The effects of 

oversampling under different regions of feature space is considered. Regardless of it, the minority 

class is reduced by lowering the feature space.   By creating ‘synthetic’ examples, the oversampling 

data is replaced for the improvements of minority classes.  Here, additional data operators are 

performed on the real data.   It makes use of rotation and skew operators on the training data. The 

generated synthetic examples in alignment to the real-time data behave like feature space instead 

of data space.  The minority of each class combines with the line segments of the nearest data 

points. Once the majority and minority classes are defined properly, then the oversampled data are 

sorted out. The scaled features are then fed into the ensemble of classifiers.  The combination of 

k-Nearest Neighbors and Gaussian distributions are merged to scale the features.   

a) K- Nearest Neighbors (k-NN):  

In this step, a k-Nearest Neighbor Classifier is built. While performing classification, k-

NN considers the unbiased weighting of instances in the decision rule regardless of the distance.  

The steps of the conventional k-NN classifier are:  

⚫ Finding the k-training instances  

⚫ Selecting the most common data on these k-instances 

⚫ Estimating the distance values between those k-instances. 

 The decision rule of the KNN method is based on item strength rather than majority vote. 

Any test point to be evaluated is assigned the label of the class with the highest summation of item 

strength. Here, the training data is splitted into smaller subsets. A classifier model is designed for 

each subset and then, a distance approach is applied to classify the testing data. Based on the 

estimated distance on the testing data will determine the performance of the classifiers. Since it 

deals with the continuous attributes, the distance estimation between the data is easily calculated 

using the euclidean distance formula. Let the data in the first subset is represented as, 

(x1, x2. . . . . xp)and the data in the second subset is represented as, (y1, y2. . . . . yq). Then, the 

euclidean distance between two subsets is given as,  

Distance = √  

 

    For each data in the subsets are analyzed using the above equation. It is found that the 

largest values create an issue with the smallest values.  

b) Gaussian Distribution:  

The extracted features have helped to determine the variance of the cases related to  

software defects. Then, multivariate Gaussian distribution was formulated in testing instances for 

differentiating the bug classes.  By applying multivariate Gaussian models, the interaction between 

the data has strongly evoluted with reduced complexity. Let us assume x, as a number of bugs 
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classes, optimal fit parameter €. The maximum likelihood value is determined for the training set.  

The features used for training purposes are determined with mean and standard deviation value 

using Gaussian Distribution p(x). It is expressed as 

                                                                   

k=  Count of features taken from the sample data 

μ = mean value of the gaussian distribution function 

σ = standard deviation 

The assumptions formulated to define the anomaly classes are  

If P(x) < optimized fit value €, then the value is said to be bug class  

If P(x)>= optimized fit value €, then the value  belongs to  normal class  

3.3 Ensemble Classifier:  

The design of ensemble classifiers is done to find out the defect classification. Here, three well-

known classifiers such as random forest, adaboost and bagging classifiers are formulated.  

a) Random forest classifiers:  

 The proposed steps of the random forest classifiers are:  

⚫ The diversity of each record under a tree ensures correlated features between a node and 

the leaves.  

⚫ Random features are selected to build the trees.  

⚫ Root node is not altered at any causes i.e stopping criterion, parameter fitness and so on.  

⚫ Root nodes are altered only when the information gain changes.  

⚫ Ensured efficient training features to the classifier models.  

Consider a possible set of N records of input data. Each record is denoted as a d-

dimensional vector, along with single aspects C, which is the label of the random trees under 

single-objective.  It is expressed as:    

                            

Where,  

 X and Y are the labels of records.     
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 A splitting criterion in two dimensions for a random tree are given as,  

         

 The random tree is formed by the splitting criterion with the mutual information.  In 

specific to, the splitting functions assist to construct the left and right child of a tree.  The below 

equation presents the constraints of the left and right child of a tree.  

           

 The construction of a child in a tree represents the quality of the data sets Si. The 

information gain of each record is estimated from eqn. (20):  

        

Where,  

H(s) is the entropy value of set S.  

Each tree denotes the class with the information gain of datasets Si. Henceforth, the incessant 

records sampling  Thus, the trees are formed by continuous sampling of records by the above two 

equations. Specifically, internal nodes of a tree are assigned by the maximum information gain.  

The overall split of a tree for depth of a tree as, T= d(d-1), is given in below equations.  

                           

 During the construction of the trees, i.e placing the node as, left (or) right branch of a tree, 

an overfitting of the data may occur. In the case of constructing the random forest, the diversity 

issue brings significant change over the classifiers.  The collection of trees under forest is 

represented as F= (T1… Tf). The left and right branches of a tree are regularized before forming 

the forests. Each tree is independently trained.  

b) Adaboost classifier:  

 Boosting is an approach that creates   prediction rules by merging weak and relatively 

inaccurate rules.  It discovers the class  by moving forward.  The pseudocode of adaboost algorithm 

is,  
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Pseudocode:  

Given data: (x1, y1. . . . . . (xm, ym) where, x and y are the set of samples 

Initialize: D1(a) = 1 n⁄ fora = 1, . . . , n 

For q=1, ….. P 

  Train the weak learner using distribution Dq. 

  Get the weak hypothesis, ht: ℵ → {−1, +1} 

  Select the ht with the low weighted error, 

                                 ϵt = Pra Dq
[ht(xa ≠ ym  

 

Select αt =
1

2
ln (

1−ϵt

ϵt
) 

Update for, a= 1,...., n:  

            Dt+1(a) =
Dt(a)exp(−αtymht(xm))

Zt
 

 

Where, Zt is the normalization factor.  

The final hypothesis output :  H(a) = signht (a)) 

c) Bagging classifier:  

 Bagging classifier takes the decision with the different learners into one prediction model 

which is implemented by  voting approach. Regardless of it, the bagging process is done in three 

easy ways, namely, the alternative which leads to the experts. For a case that one gets more votes 

than other classes, it is considered as correct. The classes are categorized by the voting modules.    

Similar to that, the weight is also randomly estimated in the training sets.   
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Fig.1. Proposed workflow  

 4. Results and Discussion:     

The proposed framework is experimented under certain performance metrics.  The dataset is 

collected from the public repository, named, promise software defect prediction is implemented in 

this study. The data analysis is done using Python, a high level programming language.  Python is 

the recent programming language employed in the data analytics study.   It has a great choice of 

Machine Learning (ML) and Artificial Intelligence (AI) libraries that explores the efficiency of the 

real-time analytic system.  In our proposed study, the confusion matrix is given as,   

True positive (TP)- No. Of samples correctly identified as true  

False positive (FP)- No. Of samples incorrectly identified as  true 

True Negative (TN)- No. Of samples correctly identified as false 

False Negative (FN)- No. Of samples incorrectly identified as false  
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Class Label values 

True 0 

False 1 

 

Table 1. Class Distribution  

Premises: 

Labels: True (presence of software defect) and false (absence of software defect) 

a) Recall:  The proportion of true cases to the predicted true cases which is expressed as 

Recall= (TP)/(TP+FN) 

b) Precision: It is defined as the proportion of predicted true that are correctly real true value. It 

is given as: 

Precision= (TN)/(TN+FP) 

c) Prediction Accuracy: It is the most intuitional performance that measures the correctly 

predicted observation to the total observations. It defines the ability of distinguishing true and false 

abnormal cases. It is given as: 

Accuracy= (TP+ TN)/ (TP+TN+FP+FN) 

 

Fig.2. Data analysis before the SMOTE application  
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Fig.3. Data analysis after the SMOTE application  

The fig.2 and 3 presents the data analysis of the SMOTE application. Here, the considered 

dataset is explored in terms of true and false i.e presence of software defects (True) and the absence 

of software defects (false). It helps to explore the distribution of majority and minority classes. 

The need of oversampling processing by means of SMOTE technique is to leverage minority data 

classes.   

 

Parameters Existing Proposed 

Sensitivity 96 96 

Specificity 17 82 

Precision 96 96 

Accuracy 82 89 

Table 2: Comparison between existing and proposed classifiers 
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Fig. 3. Existing - Accuracy performance of ensemble classifiers  

The fig.3 presents the accuracy performance of the ensemble of classifiers before the 

SMOTE technique usage.  It is observed from the results that the classifiers have yielded better 

accuracy, however, the sensitivity and specificity of the software defect classification are taken the 

higher values. It proves the inability of the classifiers.     

 

Fig.4. Proposed - Accuracy performance of ensemble of classifiers  

The fig.4 presents the accuracy performance of the ensemble of classifiers after the 

SMOTE technique usage. Here, X-axis represents the set of ensemble classifiers and Y-axis 

represents the set of classifiers.  It is clearly understood that the proposed ensemble classifiers have 

sorted out the class imbalance issues with the  SMOTE technique.    
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5. Conclusion: 

This paper designs a novel ELMA+ technique that intends to accurately predicts the software 

defect classes. An ensemble of well-known classifiers such as k-nearest neighbors (k-NN), 

Adaboost and Bagging are analyzed in this study. To begin the study,  the defect data is collected 

from the public repository. A simpler exploratory data analysis is done to know the count of 

presence and absence of software defects. SMOTE technique is applied to preprocess the collected 

dataset. The presence of oversampling data has lowered the participation of minority classes during 

the training process. In order to leverage the minority classes and the presence of data ambiguity 

issues, the oversampling data are aligned with the synthetic data creation. The generated synthetic 

examples in alignment to the real-time data behave like feature space instead of data space.  The 

minority of each class combines with the line segments of the nearest data points.  The scaled 

features are then fed into the ensemble of classifiers, namely, k-nearest neighbors (k-NN), 

Adaboost and Bagging. These three classifiers take the feature scaled data as input to classify the 

software defects. In specific, minority classes are resolved and then analyzed to resolve the data 

ambiguity issues.  The experimental results have shown the efficiency of the proposed ensemble 

classifiers by achieving the better value of  accuracy, sensitivity, specificity and precision. The 

comparative analysis done from the perspective of before and after SMOTE application. It is 

clearly understood from the achieved results that the feature scaled data into the ensemble 

classifiers has yielded better prediction outcomes.   
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