
Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

651 http://www.webology.org

Elma+ : An Ensemble Learning Based Model For Accurate

Prediction Of Software Defects

MR..RAGHVENDRA OMPRAKASH SINGH1 , DR. BLESSY THANKACHAN2

1Research Scholor Department of Computer and Systems Sciences Jaipur National University,

Jaipur Inida.

2Assistant Director and Guide Department of Computer and Systems Sciences Jaipur National

University, Jaipur Inida.

Abstract:

The recent developments made in the software engineering technologies has introduced the growth

of the data. In order to handle the explosive growth of the data, many software quality assessments

are introduced to validate designed software. Software defects assessment is one of the finest

qualities of software engineering models. Software defects classification is the basis for effective

management of software defects. This paper presents a novel ELMA+ technique to predict the

classes of software defects. Here, an ensemble learning approach is taken to do the prediction

systems. Initially, the defect data is collected from the public repository. A simpler exploratory

data analysis is done to know the count of presence and absence of software defects. SMOTE

technique is applied to preprocess the collected dataset. The presence of oversampling data has

lowered the participation of minority classes during the training process. In order to leverage the

minority classes and the presence of data ambiguity issues, the oversampling data are aligned with

the synthetic data creation. The generated synthetic examples in alignment to the real-time data

behave like feature space instead of data space. The minority of each class combines with the line

segments of the nearest data points. Once the majority and minority classes are defined properly,

then the oversampled data are sorted out. The scaled features are then fed into the ensemble of

classifiers, namely, k-nearest neighbors (k-NN), Adaboost and Bagging. These three classifiers

take the feature scaled data as input to classify the defects of the softwares. The proposed

framework is simulated and has shown the efficacy of the proposed ensemble classifiers in terms

of accuracy, sensitivity, specificity and the precision. The comparative analysis done from the

perspective of before and after SMOTE application. It is clearly understood from the achieved

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

652 http://www.webology.org

results that the feature scaled data into the ensemble classifiers has yielded better outcomes.

Keywords: Software engineering; Software defects; SMOTE technique; feature scaling process;

Ensemble classifiers; Oversampling data.

1. Introduction:

Software Engineering (SE) is one of the eminent fields that deals with the organization of the

developed and developing software. Quality Assurance (QA) of the software is a crucial role in

the software development industry. QA is the kind of behavioral activity performed over the

execution of the software projects (Wang et al,2016). Software Testing (ST) is an active research

area that imbibes with the quality of the software products. Generally, the testing consumes a

higher time and effort to test the test cases. There are different kinds of software testing available,

even though the bugs (or) errors remain to be unresolved due to the lack of time and effort (Yang

et al, 2015). Therefore, a need of improvising the software testing field that preserves the time and

cost of the organizations. The developer (or) the tester should be proficient in analyzing and

predicting the software bugs at an earlier phase. Software bugs are inevitable in nature. The recent

developments made in the software industry have been emerging with complex software

applications. It is mandated that the developed software should be free from bugs (Huo X et al,

2016). The errors caused by programming functions are known as software bugs. Significantly, it

reduces the performance of the entire software applications. Each software has maintained a Bug

Tracking System (BTS) which acquires, organizes, and monitors the bugs and its reports. With the

BTS, the software entities like users, developers and the testers make use of it, to generate the test

reports. Once a bug is found, it undergoes several phases to resolve it. Analysis and Prediction of

the bugs using ensemble classifiers is being considered widely in this research study. The design

of predictive classifiers is possible with the detailed analysis of the causes of software bugs (CJ

Clemente, et al, 2018). Different prediction models related to the bug indicators are developed to

predict the count of bugs and its resolving procedures. Prediction models assist the developers to

provide software testers and the developers. Several steps are taken to support the bug prediction

models, so as to improve the quality of the software products. It prevents the bug severity (Li et

al, 2017) in future bugs. Software Defect Prediction (SDP) is an important field of study that

determines the software quality and its administration with reduced costs. The continuous failures

of the software over time are labeled as software defects. The software bugs are obtained from

the software developer and stakeholders. The role of a software defect prediction system is to

predict the defects by improving the software quality with reduced costs. Several researchers are

working on improving the static attributes which define the software quality metrics using effective

learning approaches. It relies on software attributes such as Line of Code (LoC) and also predicts

the software quality systems. In the angle of software quality systems, a different version of

prediction techniques are available for different testing and software modules environments.

1.1 Contributions of the study

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

653 http://www.webology.org

 The highlights of this paper are:

a) The historical and synthetic data are employed to resolve the minority classes and data

ambiguity issues.

b) The deployment of SMOTE technique has leveraged the minority classes by creating

synthetic data in order to find out the nearest data points.

c) The data space is treated as feature space to handle oversampling data.

d) Ensemble of classifiers, like K- Nearest Neighbors, Adaboost and Bagging techniques has

improved the predictive quality by using feature scaled data.

e) The prediction accuracy is higher than the conventional classifiers.

 1.2 Organization of the paper

The paper is organized as follows:

 Section II presents the literature survey that reviews the existing techniques.

 Section III presents the Proposed framework that explains the proposed phases.

 Section IV presents the Experimental Results and Discussion which describes the achieved

performance using the proposed techniques.

 Section V presents the Conclusion that portrays the findings of the study.

2. Related work:

The review of existing studies from the aspects of objectives, techniques designed, merits and the

demerits in this field is discussed. (Rudolf Ferenc et al, 2020) explored the scope of deep learning

in bug prediction systems. It was explored on the bugs of Java classes and obtained 55.27% F-

measure than the conventional prediction systems. The dimensions of the bugs are not considered

for analytic purposes which brings replication issues. (Cheng Zhou et al, 2020) presented the

prediction model for named entity recognition which intensively worked on the information

extraction process. Based on the obtained fine-grained factual information, the accessibility of bug

prediction under neural networks was improved. The concept of the conditional random fields has

helped to resolve the prediction error 0f 91.1%. (Sushant Kumar Pandey et al, 2019) has presented

deep features and ensemble learning techniques. It was designed to enhance the testing efforts on

the Promise repository NASA dataset. The bug features are deeply represented and analyzed under

auto-encoders that enhance the performance of the bug predictions via the highest correlation

coefficients. Bug prediction on the successive count of the software systems was explored by

(Sushant Kumar Pandey et al, 2020). The metadata of each bug was given into the training layers

of deep features which has avoided the overfitting and class imbalance issues. It is explored on

seven datasets that have reduced the MSE value from 0.71 to 4.715 and MAE from 0.22 to 1.679.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

654 http://www.webology.org

(Yan Xiao et al, 2018) has improved the localization of the bugs using enhanced

convolutional neural networks. Here, the frequency of the bugs are estimated and then fixed using

word embedding models. The system has reduced the bug fixing computational time and the test

cases generation time. The fundamental thought is to sort out the bug by developer with reference

to comparative skill with the set of predefined bug classes. (Guo et al, 2020) has presented a

Word2vec to the CNN implementation for the bug summary process. Some researchers have

studied the components, products, priority and severity to enhance the prediction accuracy of the

bug assignment process. (Zhao et al, 2019) has recommended a topic model based Latent Dirichlet

Allocation (LDA) method to compute the similarity of bug reports. With the help of the multiple

attribute data, some inconsistencies prevailing in bug reports are done. The supervision of the data

is done by LDA that derived the main subjects (Xia et al, 2017). Regardless of it, labeling of bug

reports with different label information can lead to the context information loss. Due to the

information retrieval methods, topic modeling systems take the largest data size. A semi-

supervised text categorization model (Xuan et al, 2017) was studied to accurately generate the bug

reports data. Along with the concept of bayesian approach, the report data generation was quite

better. Social networking techniques (Xuan et al, 2012) has presented the bug classes by

prioritizing the developers. Several influential factors such as characteristics of products, time

variation and the noise tolerance have prioritized the developers.

Approaches like tossing paths were to fix the bug reports. (Jeong et al, 2009) has presented

the transfer graph model that classifies the bugs. It also reported the accuracy of the bug report

assignment. However, it does not ensure the feasibility rate of the classified bugs. (Sajedi

Badashian et al, 2020) has introduced the transfer graph model with different attributes. The bug

tossing issues in bug triaging has reported that 93% of bug reports are tossed. It has stated that the

bugs were not properly ensured for different environments. (Shokripour et al, 2015) has yielded

the class score for the bug parameters. With the help of fuzzy logic systems, the bug reports are

classified into their respective classes. (Couto et al, 2012) has described a robust model that

portrayed the causality between software metrics and the bugs occurrence. With the help of corpus,

the prediction of bugs were determined. However, the false positive rate of bug classification has

increased.

 HyGRAR, a hybrid classification model that merges the hidden layer functionalities of

ANN with the association rule mining (Miholca et al, 2018a) were introduced. The relationship

between the software metrics was classified into defective and non-defective software entities. It

was explored on the NASA PC software databases. Hidden units were highly increased that

developed imbalance class issues. Unsupervised learning (Miholca et al, 2017) under coupling

metrics was explored to maintain the evolution of the bugs. An object oriented system was

introduced to quantify the coupling of application scenarios. The representation of high

dimensional datasets has increased the textual data performance. Doc2Vec conversion has

increased the structural class rates. The role of semantic and structural features (Miholca et al,

2019) under the learning process increased the contextual information rate. The files were coded

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

655 http://www.webology.org

under Abstract Syntax Trees (AST) and converted into the token vectors. CNN classifiers was

used to work out with the token vectors. . Based on the semantic features, the classes were done

with 99.5% accuracy rate. In continuation with, a hybrid algorithm was studied using association

rules and artificial neural networks (Miholca et al, 2018b). Here, 10 open source data was

implemented to enhance the classifier’s efficiency, however, the heavy computational steps were

observed.

In (Radjenovic D. Heri, 2013), a systematic review was done on quality metrics of software

defect prediction. The review has stated that the prediction of fault location is really helpful in

influencing the quality metrics and thus, contextual properties explored the accessibility of

selecting the quality metrics. An intelligent software fault prediction was studied by Deep Belief

Networks (Wang et al, 2016). . With the help of syntax trees, the semantic features were gathered

and analyzed on the within-project defect prediction (WPDP) and cross-project defect prediction

(CPDP). Both the prediction model has decreased the false positive rate by 10% than TCA+

algorithm. In (Jing et al, 2017), the author was specific to resolve the class imbalance problems by

an improved Subclass Discriminant Analysis (SDA). SDA has deliberately resolved the feature

learning modules by evenly distributing the source and target data consistently.From the

perspective of cross-project domain, the prediction model has lowered the class separation based

on logical constraints. Two stage cost sensitive learning module (Liu et al, 2014) was designed to

leverage the cost sensitivity analysis on the deep learning algorithms. In alignment to that, a cost-

sensitive approach was also designed for feature selection algorithms such as Cost-Sensitive

Variance Score (CSVS), Cost-Sensitive Laplacian Score (CSLS), and Cost-Sensitive Constraint

Score (CSCS). Though it decreased the computational time and also leveraged the cost metrics

based on the software quality, the efficiency of determining contextual information was not

studied. Similar study was studied using a ranking approach (Yang et al, 2015) that stated the

efficient use of testing resources. Depending on the count of defects, the module was designed to

cope up with the noisy data as well as the feature learning modules. The characterization of the

relationship between the square errors exhibited in the classifier were rectified under optimization

schemes.

In (Czibula et al, 2014), authors have explored latent semantic indexing in the

computational linguistics fields. The processing capabilities of the genetic ontology was studied

latent semantic analytics. The similarity among the topics were extracted to process the

experimental data. Some of the structured data was not extracted under heterogeneous classes.

Relational Association Rules (RAR) (Haghighi et al, 2012) was designed to resolve the defect

prediction under different association rules. It was explored on NASA datasets that required heavy

time on the data cleaning process. It was processed on different datasets, however, the role of the

constructed class is not focussed on a semi-supervised algorithm. One of the software qualities is

the cost reduction which was studied by data mining approach (Kirbas et al, 2017a). Naive bayes

classifier was employed , along with the performance of other 37 different classifiers, so as to

detect the faults. The authors have stated that the decreased costs enhanced the classifiers'

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

656 http://www.webology.org

performances. The system has increased the classification accuracy, yet, it is not feasible to

determine the boundaries of classes in bagging algorithms. The software faults in industrial sectors

(Kirbas et al, 2017b)] have distorted the relationship between the evolutionary coupling and

defects. It experimented on the legacy financial system and a modern telecommunications system.

Regression analysis was employed to find out the relationship between the software metrics. The

different effects of evolutionary coupling were employed to detect the faults based on their types,

size and process metrics. Likewise, the infrastructure issues are not studied for different testing

cycles. In (Cataldo et al, 2009), the author has introduced a conceptual coupling based metrics for

software defect prediction systems. Coupling metrics is one of the software quality metrics that

defines the performance of the prediction modules. It was established by estimating the similarities

among the bugs. However, it can’t handle the class imbalance issues during data crowdedness.

Similar study was extended using empirical study (Chen et al, 2013). The coupling class includes

the structural, semantic and dynamic measures of the software systems. Here, Java classes such as

Argo UML, J Hot Draw and jEdit were studied. The semantic coupling was studied more than

other coupling measures. The encapsulation between the classes were revised using call methods

(Sushan et al, 2020). The logical constraints on class call methods are not studied.

3. Proposed Methodology:

This section presents the working of the ELMA+ that classifies software defects by means of

ensemble classifiers.

3.1 Data collection & preprocessing:

The database is collected from the public repository, named, Promise datasets. It contains several

classes of the software bug classes. The dataset contains many noises ie. missing and unbounded

data. These imbalances are rectified using random sampling techniques. This step is known as data

preprocessing. The collected datasets are raw which have to be preprocessed using preprocessing

techniques to remove the irrelevant and uncertainties from the data. Generally, sampling methods

are employed to preprocess the data. The data sampling reduces the computational steps of the

training data. Here, the sampling methods are classified into two approaches, namely, under

sampling methods and over sampling methods. In this study, automatic proper sampling methods

are explored to reduce the computational space of irrelevant data. The larger dataset is converted

into smaller random samples. Each sample consists of T tuples data. While drawing a sample from

the tuples T, it is likely to be the probability of tuples under the dataset D ie. 1/T, then all tuples

are equally sampled. Some tuples are recorded before being replaced with the other tuples. By

doing so, all tuples are sampled under the given functions which could refine the noisy and

redundant data.

3.2 Feature extraction:

 In the proposed work, a novel Synthetic Minority Over-Sampling Technique (SMOTE) technique

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

657 http://www.webology.org

is employed for an oversampling process so as to alleviate the class imbalance problem and make

the training dataset contain adequate samples of both majority and minority classes. Many

oversampling data is replaced so as to enhance the minority class recognition. The effects of

oversampling under different regions of feature space is considered. Regardless of it, the minority

class is reduced by lowering the feature space. By creating ‘synthetic’ examples, the oversampling

data is replaced for the improvements of minority classes. Here, additional data operators are

performed on the real data. It makes use of rotation and skew operators on the training data. The

generated synthetic examples in alignment to the real-time data behave like feature space instead

of data space. The minority of each class combines with the line segments of the nearest data

points. Once the majority and minority classes are defined properly, then the oversampled data are

sorted out. The scaled features are then fed into the ensemble of classifiers. The combination of

k-Nearest Neighbors and Gaussian distributions are merged to scale the features.

a) K- Nearest Neighbors (k-NN):

In this step, a k-Nearest Neighbor Classifier is built. While performing classification, k-

NN considers the unbiased weighting of instances in the decision rule regardless of the distance.

The steps of the conventional k-NN classifier are:

⚫ Finding the k-training instances

⚫ Selecting the most common data on these k-instances

⚫ Estimating the distance values between those k-instances.

 The decision rule of the KNN method is based on item strength rather than majority vote.

Any test point to be evaluated is assigned the label of the class with the highest summation of item

strength. Here, the training data is splitted into smaller subsets. A classifier model is designed for

each subset and then, a distance approach is applied to classify the testing data. Based on the

estimated distance on the testing data will determine the performance of the classifiers. Since it

deals with the continuous attributes, the distance estimation between the data is easily calculated

using the euclidean distance formula. Let the data in the first subset is represented as,

(x1, x2. xp)and the data in the second subset is represented as, (y1, y2. yq). Then, the

euclidean distance between two subsets is given as,

Distance = √

 For each data in the subsets are analyzed using the above equation. It is found that the

largest values create an issue with the smallest values.

b) Gaussian Distribution:

The extracted features have helped to determine the variance of the cases related to

software defects. Then, multivariate Gaussian distribution was formulated in testing instances for

differentiating the bug classes. By applying multivariate Gaussian models, the interaction between

the data has strongly evoluted with reduced complexity. Let us assume x, as a number of bugs

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

658 http://www.webology.org

classes, optimal fit parameter €. The maximum likelihood value is determined for the training set.

The features used for training purposes are determined with mean and standard deviation value

using Gaussian Distribution p(x). It is expressed as

k= Count of features taken from the sample data

μ = mean value of the gaussian distribution function

σ = standard deviation

The assumptions formulated to define the anomaly classes are

If P(x) < optimized fit value €, then the value is said to be bug class

If P(x)>= optimized fit value €, then the value belongs to normal class

3.3 Ensemble Classifier:

The design of ensemble classifiers is done to find out the defect classification. Here, three well-

known classifiers such as random forest, adaboost and bagging classifiers are formulated.

a) Random forest classifiers:

 The proposed steps of the random forest classifiers are:

⚫ The diversity of each record under a tree ensures correlated features between a node and

the leaves.

⚫ Random features are selected to build the trees.

⚫ Root node is not altered at any causes i.e stopping criterion, parameter fitness and so on.

⚫ Root nodes are altered only when the information gain changes.

⚫ Ensured efficient training features to the classifier models.

Consider a possible set of N records of input data. Each record is denoted as a d-

dimensional vector, along with single aspects C, which is the label of the random trees under

single-objective. It is expressed as:

Where,

 X and Y are the labels of records.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

659 http://www.webology.org

 A splitting criterion in two dimensions for a random tree are given as,

 The random tree is formed by the splitting criterion with the mutual information. In

specific to, the splitting functions assist to construct the left and right child of a tree. The below

equation presents the constraints of the left and right child of a tree.

 The construction of a child in a tree represents the quality of the data sets Si. The

information gain of each record is estimated from eqn. (20):

Where,

H(s) is the entropy value of set S.

Each tree denotes the class with the information gain of datasets Si. Henceforth, the incessant

records sampling Thus, the trees are formed by continuous sampling of records by the above two

equations. Specifically, internal nodes of a tree are assigned by the maximum information gain.

The overall split of a tree for depth of a tree as, T= d(d-1), is given in below equations.

 During the construction of the trees, i.e placing the node as, left (or) right branch of a tree,

an overfitting of the data may occur. In the case of constructing the random forest, the diversity

issue brings significant change over the classifiers. The collection of trees under forest is

represented as F= (T1… Tf). The left and right branches of a tree are regularized before forming

the forests. Each tree is independently trained.

b) Adaboost classifier:

 Boosting is an approach that creates prediction rules by merging weak and relatively

inaccurate rules. It discovers the class by moving forward. The pseudocode of adaboost algorithm

is,

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

660 http://www.webology.org

Pseudocode:

Given data: (x1, y1. (xm, ym) where, x and y are the set of samples

Initialize: D1(a) = 1 n⁄ fora = 1, . . . , n

For q=1, ….. P

 Train the weak learner using distribution Dq.

 Get the weak hypothesis, ht: ℵ → {−1, +1}

 Select the ht with the low weighted error,

 ϵt = Pra Dq
[ht(xa ≠ ym

Select αt =
1

2
ln (

1−ϵt

ϵt
)

Update for, a= 1,...., n:

 Dt+1(a) =
Dt(a)exp(−αtymht(xm))

Zt

Where, Zt is the normalization factor.

The final hypothesis output : H(a) = signht (a))

c) Bagging classifier:

 Bagging classifier takes the decision with the different learners into one prediction model

which is implemented by voting approach. Regardless of it, the bagging process is done in three

easy ways, namely, the alternative which leads to the experts. For a case that one gets more votes

than other classes, it is considered as correct. The classes are categorized by the voting modules.

Similar to that, the weight is also randomly estimated in the training sets.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

661 http://www.webology.org

Fig.1. Proposed workflow

 4. Results and Discussion:

The proposed framework is experimented under certain performance metrics. The dataset is

collected from the public repository, named, promise software defect prediction is implemented in

this study. The data analysis is done using Python, a high level programming language. Python is

the recent programming language employed in the data analytics study. It has a great choice of

Machine Learning (ML) and Artificial Intelligence (AI) libraries that explores the efficiency of the

real-time analytic system. In our proposed study, the confusion matrix is given as,

True positive (TP)- No. Of samples correctly identified as true

False positive (FP)- No. Of samples incorrectly identified as true

True Negative (TN)- No. Of samples correctly identified as false

False Negative (FN)- No. Of samples incorrectly identified as false

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

662 http://www.webology.org

Class Label values

True 0

False 1

Table 1. Class Distribution

Premises:

Labels: True (presence of software defect) and false (absence of software defect)

a) Recall: The proportion of true cases to the predicted true cases which is expressed as

Recall= (TP)/(TP+FN)

b) Precision: It is defined as the proportion of predicted true that are correctly real true value. It

is given as:

Precision= (TN)/(TN+FP)

c) Prediction Accuracy: It is the most intuitional performance that measures the correctly

predicted observation to the total observations. It defines the ability of distinguishing true and false

abnormal cases. It is given as:

Accuracy= (TP+ TN)/ (TP+TN+FP+FN)

Fig.2. Data analysis before the SMOTE application

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

663 http://www.webology.org

Fig.3. Data analysis after the SMOTE application

The fig.2 and 3 presents the data analysis of the SMOTE application. Here, the considered

dataset is explored in terms of true and false i.e presence of software defects (True) and the absence

of software defects (false). It helps to explore the distribution of majority and minority classes.

The need of oversampling processing by means of SMOTE technique is to leverage minority data

classes.

Parameters Existing Proposed

Sensitivity 96 96

Specificity 17 82

Precision 96 96

Accuracy 82 89

Table 2: Comparison between existing and proposed classifiers

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

664 http://www.webology.org

Fig. 3. Existing - Accuracy performance of ensemble classifiers

The fig.3 presents the accuracy performance of the ensemble of classifiers before the

SMOTE technique usage. It is observed from the results that the classifiers have yielded better

accuracy, however, the sensitivity and specificity of the software defect classification are taken the

higher values. It proves the inability of the classifiers.

Fig.4. Proposed - Accuracy performance of ensemble of classifiers

The fig.4 presents the accuracy performance of the ensemble of classifiers after the

SMOTE technique usage. Here, X-axis represents the set of ensemble classifiers and Y-axis

represents the set of classifiers. It is clearly understood that the proposed ensemble classifiers have

sorted out the class imbalance issues with the SMOTE technique.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

665 http://www.webology.org

5. Conclusion:

This paper designs a novel ELMA+ technique that intends to accurately predicts the software

defect classes. An ensemble of well-known classifiers such as k-nearest neighbors (k-NN),

Adaboost and Bagging are analyzed in this study. To begin the study, the defect data is collected

from the public repository. A simpler exploratory data analysis is done to know the count of

presence and absence of software defects. SMOTE technique is applied to preprocess the collected

dataset. The presence of oversampling data has lowered the participation of minority classes during

the training process. In order to leverage the minority classes and the presence of data ambiguity

issues, the oversampling data are aligned with the synthetic data creation. The generated synthetic

examples in alignment to the real-time data behave like feature space instead of data space. The

minority of each class combines with the line segments of the nearest data points. The scaled

features are then fed into the ensemble of classifiers, namely, k-nearest neighbors (k-NN),

Adaboost and Bagging. These three classifiers take the feature scaled data as input to classify the

software defects. In specific, minority classes are resolved and then analyzed to resolve the data

ambiguity issues. The experimental results have shown the efficiency of the proposed ensemble

classifiers by achieving the better value of accuracy, sensitivity, specificity and precision. The

comparative analysis done from the perspective of before and after SMOTE application. It is

clearly understood from the achieved results that the feature scaled data into the ensemble

classifiers has yielded better prediction outcomes.

REFERENCES

1. Wang S, Liu T, Tan L. Automatically learning semantic features for defect prediction. In:

Software engineering (ICSE), 2016 IEEE/ACM 38th international conference on. IEEE;

2016. p. 297–308.

2. Yang X, Lo D, Xia X, Zhang Y, Sun J. Deep learning for just-in-time defect prediction.

QRS; 2015. p. 17–26.

3. Huo X, Li M, Zhou Z-H. Learning unified features from natural and programming

languages for locating buggy source code. IJCAI; 2016. p. 1606–12.

4. Clemente CJ, Jaafar F, Malik Y. Is predicting software security bugs using deep learning

better than the traditional machine learning algorithms?. In: 2018 IEEE international

conference on software quality, reliability and security (QRS). IEEE; 2018. p. 95–102.

5. Li J, He P, Zhu J, Lyu MR. Software defect prediction via convolutional neural network.

In: 2017 IEEE international conference on software quality, reliability and security (QRS).

IEEE; 2017. p. 318–28.

6. Rudolf Ferenc et al.,. Deep learning in static, metric-based bug prediction. Array (Elsevier),

6, 2020.

7. Cheng Zhou et al.,. Improving software bug-specific named entity recognition with deep

neural networks. The Journal of Systems and Software, 165, 2020.

8. Sushan Kumar Pandey et al.,. BPDET: An Effective Software Bug Prediction Model using

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

666 http://www.webology.org

Deep Representation and Ensemble Learning Techniques. Expert Systems With

Applications. 2019.

9. Sushan Kumar Pandey et al.,. BCV-Predictor: A bug count vector predictor of a successive

version of the software system . Knowledge based systems. 2020.

10. Yan Xiao et al.,. Improving Bug Localization with Word Embedding and Enhanced

Convolutional Neural Networks. Information and Software Technology.2018.

11. Guo, Shikai, Zhang, Xinyi, Yang, Xi, Chen, Rong, Guo, Chen, Li, Hui, Li, Tingting, 2020.

Developer Activity Motivated Bug Triaging: Via Convolutional Neural Network. Neural

Processing Letters 51 (3), 2589–2606.

12. Zhao, Huimin, Zheng, Jianjie, Xu, Junjie, Deng, Wu, 2019. Fault Diagnosis Method Based

on Principal Component Analysis and Broad Learning System. IEEE Access 7, 99263–

99272.

13. X. Xie, W. Zhang, Y. Yang, and Q. Wang, ‘‘DRETOM: Developer recommendation based

on topic models for bug resolution,” 2012, doi: 10.1145/ 2365324.2365329.

14. Xuan, J., Jiang, H., Ren, Z., Yan, J., Luo, Z., 2017. Automatic bug triage using semi-

supervised text classification. arXiv.

15. Xuan, Jifeng, Jiang, He, Hu, Yan, Ren, Zhilei, Zou, Weiqin, Luo, Zhongxuan, Wu,

Xindong, 2015. Towards effective bug triage with software data reduction techniques.

IEEE Trans. Knowl. Data Eng. 27 (1), 264–280.

16. G. Jeong, S. Kim, and T. Zimmermann, ‘‘Improving bug triage with bug tossing graphs,”

2009, doi: 10.1145/1595696.1595715.

17. Sajedi-Badashian, Ali, Stroulia, Eleni, 2020. Guidelines for evaluating bug-assignment

research. Journal of Software: Evolution and Process. 32 (9).

18. Shokripour, Ramin, Anvik, John, Kasirun, Zarinah M., Zamani, Sima, 2015. A time- based

approach to automatic bug report assignment. Journal of Systems and Software 102, 109–

122.

19. Miholca, D., 2018. An improved approach to software defect prediction using a hybrid

machine learning model, in: 2018 20th International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing (SYNASC), pp. 443–448.

doi:10.1109/SYNASC.2018. 00074.

20. Miholca, D., Czibula, G., Zsuzsanna, M., Czibula, I.G., 2017. An unsupervised learning

based conceptual coupling measure, in: 19th International Symposium on Symbolic and

Numeric Algorithms for Scientific Computing, SYNASC 2017, Timisoara, Romania,

September 21-24, 2017, pp. 247–254.

21. Miholca, D.L., Czibula, G., 2019. Software defect prediction using a hybrid model based

on semantic features learned from the source code, in: Douligeris, C., Karagiannis, D.,

Apostolou, D. (Eds.), Knowledge Science, Engineering and Management -LNCS, volume

11775, Springer International Publishing, Cham. pp. 262–274.

22. Miholca, D.L., Czibula, G., Czibula, I.G., 2018. A novel approach for software defect

prediction through hybridizing gradual relational association rules with artificial neural

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

667 http://www.webology.org

networks. Information Sciences 441, 152 – 170.

23. Radjenovic, D., Heri ́ cko, M., Torkar, R., ̌ Zivkovi ̌ c, A., 2013. Software fault prediction

metrics: A systematic literature review. In- ˇ formation and Software Technology 55, 1397

– 1418.

24. Wang, S., Liu, T., Tan, L., 2016. Automatically learning semantic features for defect

prediction, in: Proc. of the 38th Int. Conf. on Softw. Engineering, ACM, New York, NY,

USA. pp. 297–308

25. Jing XY, Wu F, Dong XW, Xu BW. An improved SDA based defect prediction framework

for both within-project and cross-project class-imbalance problems. IEEE Trans Softw Eng

2017;43:321–39

26. Liu M, Miao L, Zhang D. Two-stage cost-sensitive learning for software defect prediction.

IEEE Trans Reliab 2014;63:676–86.

27. Yang XX, Tang K, Yao X. A learning-to-rank approach to software defect prediction. IEEE

Trans Reliab 2015;64:234–46.

28. Czibula, G., Marian, Z., Czibula, I.G., 2014. Software defect prediction using relational

association rule mining. Inf. Sci. 264, 260–278

29. Haghighi, A.S., Dezfuli, M.A., Fakhrahmad, S., 2012. Applying mining schemes to

software fault prediction: A proposed approach aimed at test cost reduction, in: Proc/ of

the World Congress on Engineering, IEEE Computer Society, Washington, DC, USA. pp.

1–5.

30. Kirbas, S., Caglayan, B., Hall, T., Counsell, S., Bowes, D., Sen, A., Bener, A., 2017. The

relationship between evolutionary coupling and defects in large industrial software. J.

Softw. Evol. Process 29, 1–19.

31. Kirbas, S., Caglayan, B., Hall, T., Counsell, S., Bowes, D., Sen, A., Bener, A., 2017. The

relationship between evolutionary coupling and defects in large industrial software. J.

Softw. Evol. Process 29, 1–19

32. Cataldo, M., Mockus, A., Roberts, J.A., Herbsleb, J.D., 2009. Software dependencies,

work dependencies, and their impact on failures. IEEE Transactions on Software

Engineering 35, 864–878.

33. Chen, H., Martin, B., Daimon, C., Maudsley, S., 2013. Effective use of latent semantic

indexing and computational linguistics in biological and biomedical applications. Frontiers

in Physiology 4, 8

34. Sushan Kumar Pandey et al.,. BCV-Predictor: A bug count vector predictor of a successive

version of the software system . Knowledge based systems. 2020.

